Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts
نویسندگان
چکیده
Verocytotoxigenic Escherichia coli (VTEC) can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonization. As such, we compared the ability of the VTEC strain, E. coli O157:H7 'Sakai,' to colonize the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea), lettuce (Lactuca sativa), vining green pea (Pisum sativum), and prickly lettuce (Lactuca serriola), a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analyzed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce). Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonization. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 h) transcriptional response to extracts as well as longer-term (10 days) plant colonization or persistence. We show that propagation temperature (37 vs. 18°C) has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated) differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types indicate specificity in substrate utilization. Induction of stress-response genes reflected the apparent physiological status of the bacterial genes in each extract, as a result of glutamate-dependent acid resistance, nutrient stress, or translational stalling. A large proportion of differentially regulated genes are uncharacterized (annotated as hypothetical), which could indicate yet to be described functional roles associated with plant interaction for E. coli O157:H7 Sakai.
منابع مشابه
Corrigendum: Whole-Transcriptome Analysis of Verocytotoxigenic Escherichia coli O157:H7 (Sakai) Suggests Plant-Species-Specific Metabolic Responses on Exposure to Spinach and Lettuce Extracts
[This corrects the article on p. 1088 in vol. 7, PMID: 27462311.].
متن کاملDifferences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana
Internalization of food-borne bacteria into edible parts of fresh produce plants represents a serious health risk. Therefore, internalization of verocytotoxigenic E. coli O157:H7 isolate Sakai was assessed in two species associated with outbreaks, spinach (Spinacia oleracea) and lettuce (Lactuca sativa) and compared to the model species Nicotiana benthamiana. Internalization occurred in the lea...
متن کاملMicroarray-Based Screening of Differentially Expressed Genes of E. coli O157:H7 Sakai during Preharvest Survival on Butterhead Lettuce
Numerous outbreaks of Escherichia coli O157:H7 have been linked to the consumption of leafy vegetables. However, up to the present, little has been known about E. coli O157:H7’s adaptive responses to survival on actively growing (and thus responsive) plants. In this study, whole genome transcriptional profiles were generated from E. coli O157:H7 cells (isolate Sakai, stx-) one hour and two days...
متن کاملLytic bacteriophages reduce Escherichia coli O 157 : H 7 on fresh cut lettuce introduced through cross - contamination
Two outbreaks of Escherichia coli O157:H7 infections in 2006 associated with the consumption of bagged baby spinach and bagged shredded lettuce were collectively responsible for sickening 254 people and causing 3 deaths. Romaine lettuce contaminated with E. coli O157:H7, grown in California, was responsible for causing a multi-state outbreak of 60 infections in 2011. A previous multi-state outb...
متن کاملEvaluation of Models Describing the Growth of Nalidixic Acid-Resistant E. coli O157:H7 in Blanched Spinach and Iceberg Lettuce as a Function of Temperature
The aim of this study was to model the growth of nalidixic acid-resistant E. coli O157:H7 (E. coli O157:H7NR) in blanched spinach and to evaluate model performance with an independent set of data for interpolation (8.5, 13, 15 and 27 °C) and for extrapolation (broth and fresh-cut iceberg lettuce) using the ratio method and the acceptable prediction zone method. The lag time (LT), specific growt...
متن کامل